
Evolving Evacuation Route Distributions for Urban Areas

Keith J. Drew
University of Idaho

895 Perimeter Drive
Moscow, Idaho 83844

keithd@vandals.uidaho.edu

Robert B. Heckendorn
University of Idaho

895 Perimeter Drive
Moscow, Idaho 83844

heckendo@uidaho.edu

ABSTRACT
We propose a unique evolutionary approach to the prob-
lem of evacuating urban areas in preparation or response to
disaster events. Our model is unique in design and works
for dynamic topologies, different disaster events, and han-
dles roadway congestion. We apply an evolutionary strategy
which optimizes traffic flow using static probabilities as traf-
fic distributions - allowing traffic to be directed in a man-
ner which optimizes roadway throughput and human safety,
while allowing for route deviation when vehicles do not fol-
low directions. We use a microscopic traffic model that is
unconcerned with individual vehicles or routes. Our model
is tested using challenging test cases as well as real-world
data. Our results are then provided for comparison.

Keywords
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1. INTRODUCTION

1.1 describe need for work
Disaster events, both natural and man-made, continue to

occur, many with no way of preventing them (natural dis-
asters). Mitigating the loss of life from their effects is of
paramount importance. To that end, evacuation planning
is crucial. If properly managed, evacuations can reduce loss
of life as a result of disaster events significantly. Such plan-
ning can be effective both in the time leading up to and in
response to disaster events.

1.2 describe how new technology is providing
new opportunities

With technological advances in infrastructure and vehi-
cle automation, communication technology such as smart
phones, Geographical Information Systems (GIS), and in-
creased computing power, new solutions and approaches to-
ward evacuation of urban areas are becoming possible [1],
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[2]. Advanced simulations can allow us to prepare for certain
types of disaster events, and other technologies can assist in
evacuation in response to disaster events. Current research
in this area leverages new technologies that provide real-time
information on traffic systems and events, which allows for
more advanced modeling and response to emergencies [3].

1.3 describe shortcomings of current approaches
However, many details of disaster response remain unad-

dressed in the literature. Specifically, current models may
account for changes in area topology, traffic congestion, or a
moving source of danger, but don’t account for all dynamics
together. Problems with current approaches stem from the
scope of the problem addressed. Many models are designed
for a single type of disaster or event, such as a hurricane,
or are coarse grained and focus on evacuating large geo-
graphical areas. While models exist at fine-grained levels,
and for many different behavioural models, no fine-grained
model exists which will work for evacuation planning and
response, while handling dynamic topologies, events, and
human responses.

1.4 describe proposed model
To develop such a model, an evolution strategy was cho-

sen. Such an approach can provide an efficient, fast, real-
time model that is adaptable and can carry forward infor-
mation to be used in disaster response, in addition to evac-
uation planning. The model proposed in this paper is a op-
timization approach, using fine-grained modeling, and does
not use an origin-destionation model, allowing for a more
robust solution at the traffic level. Further, the model op-
timizes routing based on a safety function which can be es-
tablished for any type of disaster event, and is not limited
to disasters, but can be used to describe the goals of evac-
uation or traffic movement, although this paper focuses on
evacuation planning and response.

To increase optimization speed, this model does use coarse-
graining. Traditionally, coarse-graining applies to the graph
representations, and is used to group geographically simi-
lar areas and therefore simplify the traffic model. However,
this model uses course-graining for the vehicle population,
allowing a fine-grained modeling of the infrastructure. The
grouping of agents allows for a significant decrease in com-
putation time, without loss of accuracy.

1.5 describe work done
The model developed during the course of this research

uses evolution strategies to optimize traffic distributions at
each intersection in a given topology. The model is com-



posed of three distinct components. First, a grammar used
for defining experiments. Second, a simulation for evaluation
the fitness of each potential solution. Finally, an evolution
strategy that optimizes results of the simulation based on
overall safety of the vehicles in the simulation.

1.6 describe what has been shown
The results found using this model show that evolution

is a robust approach because of the information discovered
in optimization. We show that given an optimized evacua-
tion plan, dynamics of a disaster event and human behavior
can be quickly adapted to and re-optimized for. Further,
we show that traditional origin-destination modeling is not
necessary for evacuation planning and response.

Section 2 discusses our application target, Section 3 dis-
cusses related work and necessary background, Section 4 de-
scribes the problem we are concerned with in depth, Section
5 describes our proposed model, and Section 6 discusses our
experiments and results.

2. PROBLEM DESCRIPTION

2.1 general problem
Disasters continue to happen year after year and as a re-

sult effective evacuation plans are necessary to save lives in
the event a disaster calls for evacuation. So far, the problem
of evacuation is response to a disaster event is not solved.
The literature describes many plans for evacuation, rang-
ing from building evacuation, to stadium and traffic sys-
tem evacuation, but many models have significant limita-
tions ranging from granularity of the model to the times
different models apply, which can be pre-emptive planning
models, real-time response, or post-event response models.
The model proposed here seeks to provide fine-grained traf-
fic assignment for evacuation zones through all the periods
of a disaster event, in a fashion that is event-independent,
allowing the use of this model for any disaster event that
can be described in terms of safe vs. unsafe areas, providing
a safety function over a geographic area.

2.2 problem facing pre-emptive evacuation plan-
ning

Many models focus on pre-emptive planning for evacua-
tion in preparation for certain disaster events. For example,
in the U.S.A., states coordinate large scale emergency man-
agement (EM) plans for evacuation, while cities use models
specific to their disaster threats [4]. One example of this
approach is found in Florida state. In Florida, in response
to an increase in tropical storms over the course of 2004-
2005, Florida state introduced and passed legislation to en-
hance statewide evacuation planning and categorize evacu-
ation zones across the state. The plans created focused on
hurricanes as the prominent threat to Florida, however they
were generalized to any event that called for evacuation [5].
These zones are used to provide an evacuation plan to the
general public via a Florida Division of Emergency Manage-
ment website [6]. Our proposed model could augment this
type of evacuation plan by providing a fine-grained traffic as-
signment plan, while using the more coarse-grained planned
developed specifically for each region across a state.

2.3 problem with origin-destination models

The models that use origin-destination algorithms to eval-
uate shortest path routes, even when coupled with multi-
objective optimizations adjusting for other factors such as
congestion, are limited by a significant factor, namely that
each individual vehicle must be tracked discretely and as-
signed to a path. This implies a large number of individual
path objects, which can take a large amount of memory
space for simulation, or might be overwhelming in real-time
application with thousands of vehicles being tracked. To
handle this issue, routing should be done in a generalized
manner, which can ignore the individual identities of and
routes, and provide a generalized traffic assignment. Such
generalized routing may be achieved by using traffic distri-
butions at each applicable location.

2.4 congestion problem
Another significant issue when evacuating a population

is traffic congestion. It is desireable to maximize through-
put of the optimal routes out of the evacuation zone, which
means preventing too much congestion. Further, if a signif-
icant thorofare becomes congested and throughput of that
route drops significantly, a real-time response is necessary
to prevent further congestion and allow that congestion to
dissipate.

2.5 dynamic events problem
The dynamic nature of many disaster events presents an-

other problem, specifically for fine-grained modeling. It may
be the case that over the course of a disaster some route that
has been assigned becomes impassable or otherwise unus-
able. When the topology of the evacuation zone changes,
a real-time response is necessary to re-route traffic accord-
ingly. It should be pointed out that the issue of congestion
can be considered a dynamic event problem - the required
real-time response for a blocked road and a road that is un-
usable due to congestion is the same.

2.6 how our model solves these problems sum-
mary

The approach propsed here attempts to address these prob-
lems by providing a fine-grained evacuation model that gen-
eralizes traffic assignment through the use of traffic distribu-
tions, while managing congestion and dynamic environment
through real-time response.

3. RELATED WORK & BACKGROUND

3.1 evacuation planning is studied
Evacuation planning is not a new topic. Previous work has

addressed problems varying from room or building evacua-
tion [7], [8], [9] to city and regional evacuation [5], [10], [11],
[12], [4]. We are focused on traffic assignment during evac-
uation, as opposed to building evacuation, but refer to the
taxonomy in [8] for describing our model. In [13], Stepanov
and Smith describe seven phases of evacuation. Our work
focuses on phases V-VII. Those phases are (V), movement
through evacuation network, (VI) arrival at safety zone, and
(VII) verification. In our work we simulate these phases
as necessary to find optimized evacuation plans. Key con-
cerns regarding evacuation planning include roadway capac-
ity, travel time, and accuracy of modeling. For roadway
capacity, much work has been done in modeling congestion
issues in [11], [14], [10], [15], [16], [13], and more. Accounting



for capacity is nearly ubiquitous in the evacuation planning
literature, as it is crucial for real applications. Modeling
travel time can be accomplished in a number of ways, but
is often modeling by use of some link-cost formula, typically
based on a form of flow-rate estimation combined with appli-
cable constraints, such as a ratio of current capacity to max-
imum capacity. The other common method for travel time
estimation, which involves evaluating the state of the sim-
ulation at regular intervals such as in [14], is closely linked
with the accuracy of the model being used. Models that
evaluate state at regular time intervals tend to be more ac-
curate regarding traffic behavior than flow rate estimation
models, but are significantly more complex.

Models can be broken into categories of fine or coarse
grained, regarding how accurately the topology being evac-
uated is represented [8]. Additionally, models can be de-
scribed as microscopic or macroscopic, as in [17], which
refers to the accuracy of simulation and traffic modeling.
Traffic assignment models tend to use macroscopic models,
reducing complexity of simulation, but microscopic mod-
els do exist. We use a fine-grained, macroscopic model to
achieve accurate routing for complex traffic systems in fine-
grained detail, while abstracting minutia regarding driver
behavior, with the assumption that our model can quickly
re-optimize to adjust for disparate traffic distributions. An-
other area worth mention regards software optimization and
decreasing run-time to achieve results more quickly. Coarse-
graining the topology of an evacuation zone is an approach
used in some cases, and can be effective at reducing run-
time, however, it is not appropriate for our goals, and as
such our model tends to run faster for optimizations starting
with random individuals for evolution. Another approach
to reducing run-time, also adopted by [17], is to use vehi-
cle grouping. For the relevant experiments we use different
group sizes to maximize group size without loss of accuracy,
which leads to significant speed-ups.

3.2 evacuation planning background
Most traffic assignment and routing algorithms use an

origin-destination approach for assigning routes. In our work
we leverage probabilities to assign traffic according to traffic
distributions, but posit that our assignments are in accor-
dance with Wardrop’s First and Second Principles, which
state that no unused route will be more optimal than the
routes actually used, and that no individual can act unilat-
erally to improve their route, respectively [18]. The main dif-
ference between this approach and typical origin-destination
approaches is the focus on managing the evacuees as a whole
population, as opposed to considering each individual’s route.

Shortest path algorithms, such as Minimal Exposure Short-
est Path[14], k-shortest paths, and Dijkstra’s shortest path
algorithm are commonly used to identify optimal routes, and
have variations with additional constraints added to improve
traffic model accuracy. Stepanov and Smith approach evacu-
ation planning as a multi-objective optimization problem in
[13]. Stepanov and Smith use Integer Programming, com-
bined with a simulation of traffic and the k-shortest path
algorithm.

Evolution has also been used to optimize routes for evac-
uation planning. Evolutionary approaches include several
Genetic Algorithms (GA) [16], as well as Ant-Colony Opti-
mization (ACO) [19], [20] and multi-objective optimization
approaches [21].

Saadatseresht et al. suggest that evacuation is a multi-
objective optimization problem [21]. Their approach is to
use NGSA-II [15] to assign origin-destination routes opti-
mized for capacity and nearness of safety zones. Their model
is fairly similar to the one we propose here, as it optimizes
for safety, and also uses macroscopic simulation, focusing on
routing over modeling exact vehicle behaviors. Dezani et
al. also optimize origin-destination routes using a genetic
algorithm that leverages petri net analysis to evaluate fit-
ness [16]. Their model is also macroscopic. Recent work
by Bazzan et al. [17] leverages a GA-based method for trip
assignment, very quickly. Their model is macroscopic and
leverages Wardrop’s equilibrium [18]. We compare our re-
sults with those found by Bazzan et al. below. For a more
comprehensive background on the applications of evolution-
ary computation in evacuation planning, see [9].

4. PROPOSED APPROACH
Our proposed model uses an Evolutionary Strategy (ES)

to evolve sets of static probabilities that provide traffic dis-
tributions at intersections throughout urban areas. The sets
of static probabilities are evaluated using an agent-based
simulation of traffic in an urban area. To provide a fit-
ness score, a safety function is provided and the sum of
safety across all agents is evaluated. We suggest that single-
objective optimization of safety, with time and capacity con-
straints can manage roadway congestion and find optimal
routing for vehicles by optimizing a safety function that can
be representative of any disaster.

We propose that evolution of static probability distribu-
tions is a more robust approach than evolution of point-to-
point routes, such as those used in other approaches like
ACO, because of the ability to interchange individuals and
use agent grouping. Specifically, using a distribution allows
us to treat groups as individuals without significant loss of
accuracy, providing a decrease in computation time. Fur-
ther, a distribution permits deviance from traffic assignment
for a portion of individuals by not requiring that specific ve-
hicles follow specific routes.

Another benefit of our model is that each optimization
carries important information about routing through the
topology. Previous optimizations can be used to initialize
future optimizations for similar topologies, allowing a de-
crease in computation time, as we will show. By carrying
forward important infomation, new solutions can be con-
verged upon more quickly. This is true for both changes in
the city’s topology, such as a roadway becoming unpassable,
as well as a change in safety function, as we will demonstrate.

In our approach, safety of the entire population is opti-
mized, instead of individual safety. This allows our model
to make trade-offs that benefit the population of evacuees as
a whole; such trade-offs may not be seen easily by experts
or evacuation planners.

A city topology is provided as a graph, G, before evolu-
tion begins, which includes an agent distribution, A, evolu-
tion parameters, and simulation parameters, such as total
simulation time, for evacuation. The topology is identical
for all evaluations, and when a change in topology or safety
is indicated, evolution begins with the new topology, but
using the previous, optimized, static probabilities as a seed
to the new evolution. The topology, safety function, and
all parameters are designated using SLANG, a grammar for
specifying the parameters of a simulation.



Each simulation provides a fitness score for the given set of
static probabilities, which is used to evaluate the success of
the static probabilities as traffic distributions. This process
is repeated as necessary.

4.1 SLANG Grammar
A grammar, SLANG, is used to specify evacuation area

topology, safety function, and agent distribution, as well as
parameters for the evolutionary strategy and simulation of
traffic.

The most important commands are described here, and
are used to build the graph that represents the area topology.

• city STRING INT INT
This SLANG command describes some fundamental
information about a city topology. The string argu-
ment is the name of the city, the first integer argument
indicates the number of nodes, and the second integer
is the maximum degree of any node in the topology.

• node INT INT FLOAT FLOAT FLOAT FLOAT
The node command is used to specify information about
a specific node. The arguments are node ID, capacity,
wait time, safety, latitude, and longitude.

• edge INT INT FLOAT FLOAT FLOAT FLOAT FLOAT
The edge command creates edges between nodes as
specified, and carries the information necessary to de-
termine link travel time. The arguments are src node id,
dest node id, max capacity, freeflow time, B, Beta, and
safety.

• agent INT INT INT
The agent command is used to specify where agents
begin the simulation. The arguments are start node,
number of agents, and individuals per agent.

4.2 Evolution Strategies Algorithm
We chose to use an evolution strategy (ES), as our genome

consists of sets of probabilities, represented as real numbers.
More specifically, our ES was specified as ES(µ + λ). We
compiled results with varying parameters and the best per-
formers are presented. Typically, µ = 100, λ = 100 was
sufficient, with σ = 0.1, and with as few as 100 maximum
generations for most tests.

Using the + operator, the child population competes against
the parent population for survival. This is performed using
a simple sort operation, followed by removal of individuals
with the lowest λ fitness scores.

4.3 Operators

4.3.1 Selection
Selection is performed using classic tournament selection,

with a tournament of size three. Three random individuals
are selected from the population and from those three the
one with the highest fitness is selected. Tournament selec-
tion helps prevent convergence on local optima.

4.3.2 Mutation
Mutation is performed by selecting node probabilities to

be mutated with a 50% chance. For any node selected, a
random edge-probability is chosen to be mutated by adding
a random, normally distributed value, with a standard devi-
ation of σ, typically equal to 0.1. Once the value is added, all

probabilities for the selected node are re-normalized. Typi-
cally, mutation probability was set to 0.5.

4.3.3 Crossover
While crossover is not typically used in evolution strate-

gies, we felt it could help more quickly converge on good so-
lutions, especially combined with the + operator. Crossover
is performed by iterating over the set of nodes and choos-
ing, with a 50% chance, node probabilities to swap between
the parents. This crossover produces two new individuals.
Typically, crossover probability was set to 0.2.

4.4 Encoding
Individuals in the ES are encoded as an array of real num-

ber arrays. Each sub-array contains a set of real numbers,
one for each choice a traveling agent can make at the cor-
responding node. As an example, a four-way intersection is
represented as a set of five probabilities: one probability for
each directional option (say, North, East, South, West), as
well as an additional probability to stay in the intersection.
All probabilities in a node are normalized to 1.0. This means
an additional operation is required during mutation.

Using real numbers to represent distribution of traffic at
a node is useful because they are easily interpreted. Also,
by providing a probabilistic distribution, the model works
to capture and mitigate events of agent disobedience, where
an agent is directed along one path, yet choses a different
path.

4.5 Simulation
During simulation agents move through the provided topol-

ogy, according to the current set of probabilities being eval-
uated. Agents are stored in a priority queue, sorted by time
of next arrival. All agents start the simulation in a SLANG
specified location.

During the simulation, the next agent to be evaluated
is selected from the beginning of the priority queue. The
agent’s next move is determined by selecting an edge to
travel along according to the set of probabilities at the agent’s
current location. After selection, the time of arrival at the
agent’s next destination is calculated based on edge prop-
erties, and the agent is placed back into the priority queue
at the appropriate position. This cycle is repeated until the
next agent in the priority queue has an arrival time that
exceeds the total simulation time, at which point the simu-
lation ends.

4.5.1 Simulation of Agent movement
An agent’s selection from the priority queue represents the

arrival of that agent at its destination, and there are several
possible outcomes. The agent’s arrival time may exceed the
simulation time, in which case the simulation ends. Oth-
erwise, a random value between 0 and 1 is chosen and the
agent’s ”next node” is selected based on that value. We use
a priority queue (which sorts using heapsort) to sort agents
in order of arrival time.



If the agent ”chooses” to remain in its current location, the
next arrival time is specified in the SLANG file as a fixed
number; the value is the node’s wait time. If the agent
chooses a neighboring node as its destination, the next ar-
rival time of the agent is calculated and the agent is placed
back in the priority queue. At this point, the next agent is
selected and the process is repeated.

The advantage of using a priority queue sorted by arrival
times is that idle time is optimized out of the simulation. In
the case of simulating by use of interval-based evaluations, a
significant amount of time might be spent performing com-
putations unnecessarily. In some cases, time intervals may
be better, but we find this approach more appropriate.

The algorithm for simulation is presented below.

4.5.2 Movement
Movement of agents through the graph is based on the

time is takes to move from one node to another, or how
long an agent will wait at a node before making a decision
on where to move, and by edge selection when leaving a
node with multiple edges. Edge selection is based on the

probabilities representing the genome, and is stochastic in
nature. The psuedo-code is described below. Travel time
between nodes is dictated by the following formula:

t = f + b(
c

cmax
)β (1)

[22] where t is the time it costs for an agent to travel an edge.
f is freeflow time of the link, which is the time required
to travel the link in ideal conditions (typically meaning no
other traffic). c is the current capacity of the link, while
cmax is the maximum number of vehicles that the link can
handle per unit time. b and β are tuning variables used to fit
real data measured from actual roadways. For our purposes
we used the default values of b = 4.00 and β = 0.15.

CITEME
It is important to note that cmax is taken to be 2000 in

many applications of this formula, as a default. However,
it varies on different roadways, and real-world applications
should specify this value appropriately in all uses.

Some cases of variance in cmax include reducing the value
based on behavior of traffic lights. For instance, the value is
reduced from 2000 by a proportion equivalent to the propor-
tion of ”green time”the traffic light receives at the connected
intersection.

It is also important to note that the link cost formula does
not include explicit distance or speed limit values, as those
values are implied by the freeflow value, f , as a result of
t = distance

speed
.

Additionally, the proposed model specifies hours as the
unit of time, as hours are most fitting for the problem do-
main.

Algorithm 1 describes edge selection.

Algorithm 1: Selects an edge from set of edges who
have probabilties that sum to 1.0. Selects according to
the probability distribution on average, but is stochastic.

Input : A set of probability-edge pairs corresponding
to a given node

Output: The edge selected
1 random value := random(0, 1)
2 probability sum := 0
3 foreach pair do
4 probability sum + = pair.probability
5 if random value < probability sum then
6 return pair.edge
7 end

8 end

4.5.3 Fitness Evaluation
Once the simulation is complete, the set of probabilities

used in the simulation are evaluated for their fitness. This is
a sum over all the agents for their safety value, given by the
safety of the location they are at when fitness is evaluated,
in this case at the end of the simulation. The maximum
safety for any location in the graph is 1.0. This leads to the
following fitness formula:

f =
1

n

n∑
i=0

S(ai) (2)

with n agents, a, and safety function S. The safety function
is simply the safety value of the location the given agent



finished the simulation at. This formula returns a fitness
value between 0 and 1.

This fitness function was chosen to allow adaptability to
any disaster event. The differences in how safety is measured
between different types of disasters makes using some mod-
els unfit for certain types of disasters. However, with this
model safety can be designated by any factor. For exam-
ple, a flood or tsunami event might measure safety as both
distance from the event, as well as elevation. An earth-
quake may quantify safety as distance from tall structures
or other hazards. Some events will use distance alone, but
other events may have more complex safety functions.

4.5.4 An Evaluation
In summary, a full fitness evaluation is computed as fol-

lows:

1. Initialization
The set of probabilities to be evaluated is loaded into
the city topology; the city has been defined in SLANG
prior to any fitness evalations and the set of probabil-
ities much match that topology.
Agents are initialized in their starting locations and
times; their initialization values are specified in SLANG
before any fitness evaluations are made. Typically,
agents are initialized with an arrival time of zero sec-
onds.
Finally, the curr time is set to zero seconds. This value
is replaced with each next agent evaluated, and is re-
placed with the next agent’s arrival time.

2. Simulation
The main activity during simulation consists of pop-
ping agents from the priority queue one at a time,
evaluating their next move and the arrival time at the
next node, and replacing them in the priority queue at
the appropriate location. In the case where an agent
chooses to stay in a node, the agent’s next time of ar-
rival is specified by the node’s wait time field, and is
generally fixed.

3. Fitness
The fitness of the set of probabilities is calculated when
the simulation time has expired, using equation 1.

Here is the psuedo-code:

5. EXPERIMENTS
Numerous experiments were carried out during develop-

ment to test the software and ensure the model works as
proposed. The experiments discussed here are those related
to showing the ability of the model to handle dynamic envi-
ronments and those used for comparison to other work.

zzzSubjecttoChangezzz The experiments performed include
(1) an experiment to show our model handles changes in
topology quickly and accurately; (2) an experiment to show
our model handles changes in safety functions quickly and
accurately; (3) an experiment to show our model handles
changes in agent distribution quickly and accurately; (4) a
recreation of the experiment(s) performed in [17], for the
sake of comparison.

5.1 Validation Tests
To validate our model we needed to test that capacity

and freeflow constraints effected our results. To do this we

Algorithm 2: Simulation of agent movement through a
defined city topology, based on probabilities provided in
Chromosome object

1 Simulate(Chromosome c);
Input : A set of probabilities for each edge connected

to each node; a chromosome
Output: Sum of agent safeties at the end of the

simulation, divided by the number of agents
2 Initialize Probabilities
3 Initialize Agents
4 while current time < simulation time do
5 agent := priority queue.pop()
6 current time := agent.get arrival time()
7 if current time > simulation time then
8 break
9 end

10 current node := agent.next node()
11 next edge := choose edge(current node)
12 agent.set from node(current node)
13 agent.set current edge(next edge)
14 next node := next edge.get next node()
15 agent.set next node(next node)
16 if current node == next node then
17 t := current node.get wait time()
18 else
19 t := next edge.get traversal time()
20 end
21 agent.set arrival time(current time+ t)
22 priority queue.push(agent)

23 end
24 for agenti in priority queue do
25 sum safety + = agenti.get current safety()
26 end
27 return sum safety/num agents



created a simple test with a 5x5 grid, with all edge and node
variables equal, and agents initialized to begin in the top left
corner of the grid, while safety was only in the bottom right
of the grid. After recording the path to safety indicated
by highest probabilities, we modify the freeflow values for
one test and the capacity for another test. In the case of
both tests, we encourage discovery of the same path, but
in the first case we do that by greatly reducing the freeflow
time of the edges along the selected path, while increasing
freeflow along every other edge in the graph, in hopes that
the designated path is found by our model. To test capacity
constraints, we greatly increase maximum capacity along the
selected path, while decreasing maximum capacity along all
other edges, in hopes that the designated path is discovered
by our model. The following image indicates the indicated
path, which was discovered in both cases. Data indicating
time to discover from random initialization is included.

First, the results from the baseline test indicates the route
most often converged upon by our model. The vehicle traffic
flows from along the indicated route: 0, 5, 10, 15, 20, 21, 22,
23, 24.

Next, for freeflow validation, we describe a path through
the grid that has a freeflow time of INSERT TIME USED
HERE across all edges of the path and in the direction of
safety and uses freeflow time of INSERT TIME HERE for
all other edges. The path discovered is the designated path:
0, 1, 2, 3, 8, 13, 12, 11, 10, 15, 20, 21, 22, 23, 24.

Nexts, the same path is designated for capacity testing,
and the results are similar. A maximum capacity of INSERT
CAPACITY USED HERE is used for all edges along the
path, while a maximum capacity of INSERT CAPACITY
USED HERE is used for all other edges in the grid. The
designated path is discovered again by our model: 0, 1, 2,
3, 8, 13, 12, 11, 10, 15, 20, 21, 22, 23, 24.

5.2 Comparison
Here we compare our results to results of other tests suited

to our model in the literature. Specifically, we are concerned
with the work Bazzan et al. [17]. In their paper, Bazzan et
al. seek to minimize average travel time by evolving traffic
assignments through a graph, given a set of vehicles, OD
pairs for those vehicles, and a set of k shortest paths. They
use a classic graph from [23], with the freeflow times specified
there as well. The way we model capacity is different, but
comparable. We seek to compare our results to provide some
context of how our model holds up compared to other work.

In their experiment they run k OD pairs, with k ranging
from two to 16, and we choose to compare to the case where
k = 4. We run our experiment with two vehicle origin nodes,
corresponding to their origins, with two safe nodes, corre-
sponding to their destinations. We let our model optimize
for safety, and provide the results and comparison below.

Our model is not as optimal, and our average time to
complete all traffic is significantly lower. This is probably
due to an inconsistency in modeling, but is an area for future
study and analysis. While our model does find routes to
safety, the routes found are not as fast as those found by
Bazzan et al.

The average time to safety (TTS), with standard deviation
is show below.

5.3 Changes
The following experiments are carried out in similar fasion

and test if our model accommodates dynamic events during
an evacuation. We hypothesize that if traffic assignment
probability distributions are optimized in advance, they can
be used to initialize an evolution strategy to reduce opti-
mization time, both in real time, and number of generations
without loss of accuracy. The results of these tests demon-
strate that pre-optimization leads to faster adaptability in
response to real-time events.

For these experiments we make several assumptions. First,
we assume changes are not significantly large. We posit



that some pre-computed solutions adapting to changes will
be dealing with the smallest changes possible for optimiza-
tion. If a significantly large change in any characteristic we
are investigating occurs, in a fashion too fast to re-optimize
solutions for at smaller intervals, re-optimization may not
perform better than optimization from a random restart. In
fact, and perhaps a matter of future investigation, in such
a case where the graph characteristics have been changed
significantly, re-optimization using a previous solution may
take longer than using random initialization.

The events we are concerned with here involve changes
in topology, safety zones, capacity, and vehicle distribution.
To test our hypothesis, we perform two initial optimizations
(1) we optimize a population of solutions that are initialized
with random values for the initial graph configuration and
(2) we optimize a population of solutions that are initialized
with random values for the graph configuration after some
change in topology, safety, capacity, or vehicle distribution
has been modified. Finally, we use the final population from
the first optimization to initialize the starting population
used to optimize the second graph configuration. Results
are tabled below. For each test, the evolution parameters
were kept the same for the sake of an easier comparison. The
parameters are ES(100 + 100), Pcrossover = 0.2, Pmutation =
0.5, σ = 0.1

5.3.1 Adapting to Capacity Changes
During an evacuation event a roadway may see a change in

capacity as a result of becoming partially blocked by debris,
traffic stopping in one or more lanes on a multi-lane road, or
as a result of other unpredictable events. In such a case our
model must be able to quickly adapt, and we predict that us-
ing pre-optimized traffic assignment distributions will allow
for quick adaptation. To test this prediction we run three
tests. First, we create a topology with a maximum capacity
of 1000 vehicles per unit time for all edges, G1. Next, we
create a topology that is identical, except that maximum
capacity is lowered by 100 for each edge, G2. We then op-
timize both of these graphs using our models and record
the average number of generations until maximum fitness
is achieved. We also store the solutions found from G1, as
they will be the starting population for optimization in the
next test. For the third part of the test we re-optimize G2,
starting with the solutions from G1. We record and compare
the number of generations needed to reach maximum fitness
below. We also show the average time to safety (TTS) of
each test, as well as the test topology.

5.3.2 Adapting to Topology Changes
Another event that might occur during an evacuation is

a change in topology, meaning some route or partial route
becomes unusable, such as a bridge collapsing or a road be-
comes completely blocked by debris. It is important that
our model handles such changes quickly. We make a simi-
lar prediction to the capacity change test as well, and note
that a change in topology is a more extreme version of a
change in capacity where maximum capacity is reduced to
zero for a roadway. We again run three tests. The first
test is on G1, which represents three bridges connecting two
areas, with safety being on the side opposite where vehicles
are started for these tests. G2 for this test is identical to G1,
except with an edge on the center ”bridge” removed. The
first two graphs are optimized from random traffic assign-

ment probabilities and generations until maximum fitness is
acheived are recorded. We then use the solutions from the
optimization of G1 to optimize G2, and record the number
of generations for comparison. We again show the results
and topology below.

5.3.3 Adapting to Vehicle Distribution Changes
In an evacuation event being managed at a fine-grained

level, it is expected that individual drivers will, in some
cases (if not all) use their own judgement, and ignore di-
rections based on their experience driving in the area. This
is expected because optimal traffic assignments may produce
non-intuitive results. In such cases, we must again be able
to adapt and adjust based on where vehicles actually are.
This is particularly important as optimization results from
the volume of traffic being routed and should a significant
portion of that volume change location, it is crucial to re-
optimize for the best chances at reaching safety. We make a
similar prediction here - our model will find an optimal so-
lution faster if initialized with a pre-computed solution for
a similar traffic distribution. Again, we use three tests. All
tests use an identical topology, but G1 has traffic distributed
differently than G2. The first two runs optimize for different
traffic distributions, starting with randomized traffic assign-
ment probabilities. The third run uses the optimized traffic
assignment probabilities from the first test, but with the
traffic distribution of the second run. We again record the
number of generations until maximum safety is reached, and
report the results below.

5.3.4 Adapting to Safety Changes
During many evacuation events, the threat creating the

need for evacuation is often not static. Examples include
hurricanes, floods, tsunamis, and more. As a result of the
dynamic nature of the threat, it is imperative that our model
handles changes in safe areas quickly. We predict here that
our model handles changes in safety quickly, again provided
the change is not too great. Three runs are used to perform
this experiment. The first and second are again identical
in topology, with the exception that the safe nodes move
over one node from the first run to the second run. The
optimized traffic assignment probabilities from run one are
used to initialize the third run, which has safety in the same
location as run two. The average number of generations
required to find maximum fitness are recorded and tabled
below.

5.3.5 Results
The graph shows the safety over time for the agent pop-

ulation. The table shows the average number of genera-
tions needed to reach the maximum safety with standard
deviation, the average fitness reached with standard devi-
ation, and the total simulation time. All averages were



computed over a sample size of 100 runs of the same test.

Test Avg. Gens σgens Avg Fit σfit thours
Agents1 77.99 9.605 0.999 0.003 0.7
Agents2 89.69 8.577 0.998 0.004 0.7
Agents3 30.5 8.325 1.0 0.0 0.7
Capacity1 47.75 5.208 1.0 0.0 1.0
Capacity2 55.1 6.64 1.0 0.0 1.0
Capacity3 4.35 2.19 1.0 0.0 1.0
Safety1 43.02 8.359 1.0 0 1.0
Safety2 40.855 8.2 1.0 0 1.0
Safety3 34.5 4.574 1.0 0 1.0
Topology1 73.54 15.835 1.0 0.001 0.5
Topology2 69.92 13.9 0.998 0.009 0.5
Topology3 7.01 4.574 1.0 0.0 0.5

5.4 Boise, Idaho
To test the ability of our model to handle real-world urban

evacuation problems we used geographical data from Boise,
Idaho. As the data we used was less precise than we would
like, some assumptions and liberties were taken. First, we
don’t know the exact freeflow rates of all the roads, nor the
maximum capacities of each roadway. However, our goal
is to discover how long it takes to optimize solutions for a
large problems with large numbers of vehicles. Our data
includes 283 nodes, and 914 edges. These do not represent
every road and intersection, but our model’s runtime is a
function of the number of vehicles in the graph, not the size
of the graph, so for our purpose here, missing some of the
roadways is acceptable. We test a number of cases with
varying numbers of vehicles and groups. Each test has a
group of ten vehicles initialized to start at every node in the
graph. These agents are placed here to ensure probabilities
at every area of the graph are optimized. In our model, if
an area of the graph sees no traffic, the probabilities at that
area are not punished or rewarded which produces random
traffic assignments. This affect could have dangerous results
in real-world application. The tests we run for Boise start
with only the single groups of ten vehicles at each node, and
scale up to 102,830 vehicles, with large grouping, over five
tests. Each test is run with identical evolution and graph
values, except where the vehicles are initialized. Vehicle
initialization is random, except for the ones forced to start
in each node. Each test is run 10 times and the time to run
is averaged over those runs. The results are tabled below.

Agents Rand Groups Group Size Run Time (min)
2,830 0 10 3.5
2,930 10 10 3.28
3,830 10 100 3.5
12,830 100 100 4.4
102,830 100 1000 4.25
1,002,830 1000 1000 timehere

We use a large traffic distribution, 102,830 vehicles being
evacuated. 100,000 are randomly placed around the city,
while 10 are placed at each node to start. Agents are placed
in each node to ensure that each nodes’ traffic assignment
probabilities are adjusted to improve the overall safety of
the population. If an area in an evacuation zone sees no
traffic, probabilities for that area are no better than random,
which can have devastating effects for any individuals who
find themselves there through error or otherwise. Safety
is randomly assigned throughout the graph as 0.0 or 1.0.
Again, we are concerned with runtime for this test. A set
of 100 runs is analyzed, with simulation time set to one
hour. The runs were performed using Centos 7 VM running
with 10 Intel Xeon 5000 processors and 132 GB of RAM.
However, the model does not use any multithreading, so
multiple processes were spawned to allow us to aggeregate
data over many runs. In total, the Boise test was ran by our
model 100 times, and the total run time is averaged across
all those runs.

6. CONCLUSION
In conclusion, evolved static probability distributions are

shown to provide routing to safe areas in reasonable time.
Further, the solutions used are provided as initializations
for topology changes, which reduce the optimization times
of the updated topology. These changes carry forward im-
portant routing information, already found in previous op-
timizations, while adapting around the changes. The main
advantages of our proposed model include systems for man-
aging a dynamic topology and vehicle distribution, relatively
fast computation time, and robustness achieved through both
evolution and a vehicle distribution model, instead of point-
to-point routing for individual agents.

6.1 Future Work

• Optimization including threading

• Risk and threat assemssment

• Novel application specific operator research

• Visualization
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9. EXTRA

9.1 Exhaustive Search
To get an idea of what the fitness landscape looks like for

problems in the evacuation space according to our model
look like, we performed an exhaustive search on a three-
node problem. Our graph was very simple, and the search
consisted of exploring the probabilities with precision of two
decimals, for two nodes, labeled x and y, with fitness on the
z axis. The topology:

with both node zero, one, and their edges having 0.0 safety,
and node two having a self-edge with safety 1.0. Using an
agent population of 5000 with all agents starting on node
zero, the fitness landscape is seen in the following image:



It is important to note that for each probability pair (x, y),
the simulation was run 10 times and the fitness for each run
was averaged. This provides smoothing, which is helpful
because of the stochastic nature of edge selection.

9.2 Validation Tests
To confirm that evolution was optimizing safety, we de-

veloped a set of simple tests. These are specified in SLANG,
and are very simplified.

• pit.slang The pit test describes a 10-node graph, with
a middle node and two outer rings. Safety is lowest in
the center and highest on the outer ring. Our algorithm
optimizes the probabilities so that agents are pushed
toward the other ring. See results below

INSERT RESULT DATA HERE

• maze1.slang The first maze test sought to evaluate
how probabilities were optimized given a safety path
through a grid. The grid was 5x5 and the path of safety
saw nodes and edges along path increase gradually from
zero safety to maximum safety. This test produced very
different results depending on how much time was given
for optimization.

INSERT RESULT DATA HERE

• maze2.slang The second maze produced logically sim-
ilar results to the second maze, but was forced to han-
dle congestion conflicts differently because of the safety
path.

INSERT RESULT DATA HERE

• bridges.slang bridges is used to verify that solutions
can be found more quickly with pre-optimized proba-
bility sets when the topology is changed. In the bridges
test, first an optimization is performed on the following
graph, with agents beginning in the left-most column,
and safety found in the right-most column.



After an optimization was found, the probabilities and
number of generations to find a solution were saved.
Next, the same graph is optimized from random proba-
bilities, but with an edge removed representing a bridge
collapse.

The number of generations to find a solution from ran-
dom probabilities is again saved. Finally, the second
topology is re-optimized, but with the optimal set of
probabilities from the first optimization (with the bridge
in tact) added into the population of solutions. The op-
timization is run, and the number of generations again
recorded.

INSERT RESULT DATA HERE

• dSlope.slang dSlope is a test with a deceptive slope.
The same 5x5 grid is used, but with a safety gradient
that is deceptive. Safety rises towards one corner of
the grid and in the corner there is a drop-off in safety
to zero. However, the opposite corner holds the peak,
with a maximum safety value. In this test, probabili-
ties found the peak with randomized agent starting lo-
cations where some of the agents started near the peak,
but failed to find the peak if agents started too far from
it. However, the solution did optimize safety well in the
cases where it couldn’t find the peak.

INSERT RESULT DATA HERE

• highway.slang The highway test was used to see if
our model found solutions based on time. One possible
path allows agents to travel on a highway with a low
freeflow time. The other possible routes have a much
higher freeflow time. This test was to see if, with a large
agent population, a solution that utilized both paths
could be found. Such a solution was found, accounting
for congestion.



INSERT RESULT DATA HERE

• grid.slang The grid test is used to verify that solutions
can be found more quickly with pre-optimized probabil-
ity sets when the given safety function changes. In this
test an optimization is performed on two similar safety
functions, as shown, with randomized initial probabil-
ities. For each, the number of generations required to
arrive at an optimal solution is recorded. In these tests,
agents begin along the top row of nodes.

safety1:

safety2:

After the optimizations are recorded, the set of prob-
abilities found for the first safety function are used in
the initialization of the probability population of the
second safety function, and the number of generations
required to find an optimal solution are recorded. IN-
SERT RESULT DATA HERE

9.3 Anaheim, California
To test a realistic optimization, Anaheim, California was

chosen, as data was readily available, and an initial SLANG
specification was available from previous work.

Traffic data provided by the City of Anaheim, available
online [24] was used as a basis for agent distribution, and
tests were performed over rush-hour traffic times.

The Anaheim example is used to test two ideas. First,
we wanted to test that our model can provide an optimiza-
tion for a large, real-world example. Second, we wanted to

test the feasibility of handling changes in topology quickly.
We propose that an optimal set of static probabilities used
for initialization of a different, yet similar, topology would
reduce the optimization time of the updated topology. We
believe that the reduction in time is proof that the body
of information in our solutions is carried through evolution,
and propogated forward.

First, an optimization of traffic is performed with agents
starting in the North-West area of Anaheim, and a safety
plateau in the South-East area of Anaheim, allowing for use
of I-5 through the city by agents travelling towards the ”safe-
zone”. The optimization runs for [insert time here] and is
initialized with random static probabilities.

Next, an edge along the I-5 path is removed from the
graph, and the optimization is perfomed again. All parame-
ters are the same as for the previous optimization, save the
missing edge, which makes the I-5 route partially unusable.
Removing an edge of the major thorofare should prove to
be a significant difference, one which affects the movement
of traffic in the simulation.

Finally, the second optimization is performed again, but
initialized with the set of probabilities produced from the
first optimization. This optimation should complete faster
than the second optimization which had to start with ran-
dom static probabilities.

RESULTS


